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ABSTRACT 605/0

Computational methods are developed to determine the proton
energy degradation and flux attenuation as a function of penetration
depth in various mma terials. The primary purpose of this work is to
estimate the energy deposition or tissue dose rate at a given depth
or on the surface of a shielded object. Detailed analysis of the methods
used and their accuracy are a prime part of this study. Numerous
comparisons are made with results of other worker's in this field.

%u Tho—




I1.

111,

v,

V1.

VIIL

INTRODUCTION

ENERGY SPECTRA OF PRIMARY PROTONS

MULTILAYER S

TABLE OF CONTENTS

HIELDS . .. .. .. . ... .. .. . ...

NONELASTIC PROTON COLLISIONS AND

SECONDARIES

Page

G0



NASA -GEORGE C, MARSHALL SPACE FLIGHT CENTER

TECHNICAL MEMORANDUM X-53063

THE CALCULATION OF PROTON
PENETRATION AND DOSE RATES

by

Martin O. Burrell

RESEARCH AND DEVELOPMENT OPERATIONS
RESEARCH PROJECTS LABORATORY




I. INTRODUCTION

There have been several calculational methods developed to
determine the proton energy degradation and flux attenuation as a function
of penetration depth in various materials, the ultimate purpose being
to estimate the energy deposition or dose rate at a given depth or on the
surface of a shielded target such as a man. The methods range from

fairly simple approximations to complex and tedious numerical methods.
However, most of the methods are essentially the same in that they
assume the so-called "'straight-ahead model." In this mode!, the
assumption is made that energetic protons lose energy by ionization
losses associated with the removal of bound electrons in the shield
materials,! with no subsequent change in particle direction. Elastic
scattering is assumed to be strongly in the forward direction with a
negligible energy loss and hence is ignored as a slowing-down mechanism.
However, in most of these models, an attenuation correction is made
for non-elastic collisions that completely remove the primary proton.
The degree of sophistication in the non-elastic collision calculation is

a function usually of the shield thickness and the subsequent treatment
of the secondary particles liberated.

The methods introduced by the writer are in the same category
as those discussed above. It is hoped that the innovations presented
will help in obtaining reliable solutions in a simpler manner than is now
available,

II. ENERGY SPECTRA OF PRIMARY PROTONS

It seems to follow that regardless of the methods or models used,
the slowing-down energy loss of the primary protons is assumed to be
dependent only on the ionization loss from bound electrons® which is
given by various modifications of the Bethe -Bloch formula for stopping
power;

! Hydrogen shields should probably be excepted.

2 An additional discussion on this, point may be found in Section IV of this
report, '""Non=-elastic Proton Collisions. "
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where E is the kinetic energy of the proton, Z is the atomic number,
V = BC is the proton velocity, m is the electron mass, N is the
number of atoms of the material per cm?® , I is the average ionization
potential of the material, and C is a correction term for electron-
shell binding.

A gquantity of greater utility in many of the computational scheme s
is the range of a proton which is given by

E
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The dimensions of stopping power, S(E), are usually (Mev-cm? /gm)
and therefore for the range the dimensions are (gm/cmz) from Eq. (2).
In order to see how the above quantities enter into the calculation of
proton penetration, the following development is presented. Figure la
illustrates the parameters of the problem, where E denotes the inci-
dent energy of a proton and E” the energy at depth X.

Now if certain liberties are granted it can be seen that the proton
energy in going from E to E* might be represented by an analytical
relationship such as

E = g(E"), (3)
where, obviously, E* 1is a function of X. Hence, the proton differential

energy flux at depth X > 0 may be related to the flux at depth X=0 by
a simple change of variable technique denoted by

dg E )
TdEF

At
b3

dE (4)

6 (E™) aE® = ¢ (ET)

Of course, the practicality of representing the flux at depth X ,
as shown in Eq. (4), depends on the ability to find a usable relationship
between the energy E and E™. However, the ability to write Eq. (3)
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in a nice mathematical expression does not follow from direct applica-
tion of the Bethe -Bloch formula. In order to arrive at a practical
solution to the problem, one can resort to the following exercise in
functional manipulation.

The proton range is assumed to be represented by an empirical
curve fit, or even as a tabulated set of numbers, in the case of a pure
numerical approach. Thus, if

R = F_(E) [ gm/cm?] (5)

is used to denote the range of a proton of energy E incident on a ma-
terial denoted by the subscript Z , then at the depth X (gm/cmz) in
material "Z', the energy of the proton is reduced by an amount AE
associated with an equivalent reduction in range given by AR = X.
Thus we can write

R-X =F, (E - AE). (6)

Now E - AE = E¥, the energy of the proton at depth X , and since
R = FZ(E) we write
F,(E) = X+F,(E"), and

E = g(E¥) = F.' [F

zZ

. (B¥) + X]. (7)
Thus, Eq. (7) provides the relationship required by Eq. (3). However,
there are some obvious restrictions to the functional form which the
approximation of R(E) can assume. For this reason, use is often
made of the numerical approaches to finding the proton differential energy
flux at a depth X . However, it should go without saying that the num-
ber of functional forms which are amenable to the manipulations indi-
cated in Eq. (7) are, mathematically speaking, without limits. The
most popular attempt to arrive at a simple solution to the proton pene-
tration problem is that given by assuming the range of a proton in a
material "Z'' can be represented simply by

R = aE", (8)

where the coefficient "a' 1is dependent on the material, and the power
"r'' only slightly dependent on the '"Z'" number.' In fact, a value of

L This type of approximation dates back to 1947. R.R. Wilson, Phys.
Rev., 71, 385L, Chap. 22, Sec. 3 (1947).

4




r = 1.78 will suffice for Z =6 to 30. This choice of range formula
is usually considered valid from about 10 to 250 Mev with a maximum
error of + 5% in approximating the various numerical integrations for
range based on the Bethe-Bloch formula for stopping power. As an
illustration of the techniques that can be used to arrive at a simple
formula for primary proton penetration the following is presented:

Assume that the incident proton energy spectrum is given by

- rotons
6o(E) = HE™ [‘fﬁm—;] P EaE EE R ©

and that for the slab thickness and energy spread the range is sufficiently
well approximated by Eq. (8); then, from Eq. (7), we write

. V/r

E = gED = &7+ X)) (10)
from which it is readily seen that

g% = ®" .2 i E > §)

a a
and
v/
B X r
E° =0 if E=|5 : (11)

From Eq. (11), it follows that if the slab thickness is exactly X = aEg ,
the incident proton of energy E, will just reach zero energy at depth X.
Next we find

e B
dg(E) _ . (12)
dE™ - X r_—_.l_
(E +=] T
a

Substituting the appropriate results of Eqs. (9)-(12) into Eq. (4) we
obtain
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5 HE r X % r X
E'k = . - — = E - 3
¢ x (E¥) r+q-1’(E1 s) =E (Ey -7) . (13)
* T
(Er+)—()
a

where Eq. (11) must be satisfied for the limits. Figure lb depicts the
general appearance of the transformations between Egs. (9) and (13).

Equation (13) gives the proton differential energy spectrum at
depth X for the incident spectrum given in Eq. (9), if we consider only
ionization losses and the range energy equation, R = aET. At the present
the above formulation will be terminated and the improvisions developed
by the writer will be undertaken.

The main improvement,by the writer is the introduction of an
approximation for the proton range which represents the theoretical
data, such as presented in Sternheimer's article [1] , with an accuracy
of +4%, or better, for energies from around 5Mev to over 1,200 Mev.
Also, the algebraic manipulation is essentially as elementary as that
for the relationship, R = aET. The new empirical formula for the range is

a

T
~= In (1 +2BE") (14)

R(E) =
where a,b, and r are determined by fitting the range data of Ref. [ 2]
with the requirement to minimize the maximum relative error from 10
to 1000 Mev. 1If, in Eq. (14), 2bEY << 1, then R =ZaE'. For example,
in carbon, r =1.78, a=2.3x 1073, and b=2x10"°, and we see that
if E = 200 Mev, 2bET = .05 and using R >~ aET one obtains an error to
Eq. (14) of about 2.5%. This good agreement is not obtained, however,
with a larger Z number at such a large value of E .

Figure 2 depicts an error analysis of the approximating function
of Eq. (14) compared to data presented in Ref. 2 for two different co-
efficients of r . In general practice it appears that for Z< 20, a value
of r =1.78 is adequate, and for Z> 20, r= 1.75 should be used.
However, in the case of mixed materials of medium and low Z , it
seems that a compromise may be made and that for a given calculation,
one choice of r adhered to, perhaps 1.78. Table I provides a summary
of different values of a and b for different materials with r of 1.75
and 1. 78. It should be noted that a value of r = 1.8 is also given for
tissue; this will be discussed in the development of the methods used
by the writer for dose calculations. Figure 3 is a comparison of
the error in the range for aluminum when using Eq. (14) to the error in
range when using R.= aET. Because of the possible desire to employ
other materials than those shown in Table I, the following relationships
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TABLE I

Coefficients for the Range Equation

r=1.75 r=1.78

Material a b a b

Carbon 2.58x107> 1.2x10°° 2.33x10 > 2.0x10"°
Aluminum 3.10x10 "3 1.9x10" ° 2.77x10° 2.5x%10 ¢
Iron 3.70x10°° 2.6x107° 3.26x10 3 3.0x10°°
Copper 3.85x10 3 2. 7x107° 3.40x107° 3.25x10 7
Silver 4.55x10° 3.7x10°% || ool | ..
Tungsten 5.50x10 ° 4.2x107°% || ool | o ...
Polyethelene 2.15x10"° 1.1x10"° 1.95x10"° 1. 7x10°°
Tissue* 2.32x107° 1.2x10°° 2.11x10 2.0x107°
Water 2.32x103 1.2x10"° 2.10x1073 2. 0x10™°
Air 2.68x10 ° 1.4x107° 2.41x10 2.1x10°°
Sio, 2.87x10° 1. 7x107° 2.58x10 > 2.5%10°
Glass 3.17x107° 2. 1x10”° 2.83x10° 2.8x10°°

e
bd

For stopping power in tissue:

-3 -
r,=1.80, a5=1.943x10" ", bg=2.273x10"°,



were established by the writer and may be used for obtaining the co-
efficients a and b when detailed curve fits are not warranted.

1.6 x10 2 +2.89x10* YA
r = 1.75 (15)

5.16 x 10 " Vz

o
1"

on
"

o
it

1.53x 10> +2.33x10 YA
r = 1.78 ’ , , (16)
b =8x10" +5x10 Yz

where A is the mass number and Z 1is the atomic number.

The present calculations will be primarily limited to Z< 20 ;
hence, for Z <« 20, we can write the range equation as

. 1.53x10° +2.33x10*YA -6 1.78]
R(E) = 0% 7106 v In[1H1.6x10 °VZ)E _

(17)

Even though the above equation is best for Z < 20, it is found that for
practical shielding calculations the value of Z can be extended to about
30 using r = 1. 78, and the results are quite dependable if the shield
thickness is greater than about two gm/c:mz. The reason for this is
that in copper (Z = 29), for example, the range of a 10-Mev proton is
only about 0.025 cm and a 10% error in range (. 0025 cm) at this energy
is trivial, if compared to the total shield thickness. It should be clear
however that at higher energies the range error should be much smaller
to maintain the above type of accuracy.

Reverting to the original problem of this section, we develop

the following relationships using Eq. (14) for the proton range. From
Eq. (7),

e

a r a *r,
2‘b—1n(1+2bE)—X+-2—gln (1 + 2bE ) ,

10




or

1 + 2bE" 2bX :
In o = " . (18)
1 + 2bE

Solving for E, we obtain

sk l
E = g(E") = (A+BE ) /r, (19)

where

2bX
B = exp (%) and A :;—b(B-l).

From Eq. (19) it follows that

1

I
E ) if Es AT

H

* (Er - A
B

and

s 1/1.

E 0 if E=A . (20)

It is worth noting that if X << 1, then A~X/a and Bz 1.
(See Eq. 10.) For example, with Zarbon, 2bX/a =1.717 x 107 X
and for X= 10 gm km?, the above approximation is quite valid. The
foregoing analysis demonstrates why the simple range formula (R=aET)
g1ves good results when X 1is not too large (X— 20 gm/cm and
EZ 250 Mev)1 Next, the differentiation of g(E ) gives

dg(E¥) B E*
dE™ - wor-l
(A+BE" ")

(21)

Substituting the above into Eq. (4), we obtain

e e T -1
T () =17 - (22)
(A+BE™T) *

! See discussion followi ng Eq. (14).

11



There are two choices of the incident differential energy spectrum
in vogue at present; the first is that given by Eq. (9)’or else a family
of N such curves given by

-qdi

= . .= =
¢i(E) = H;E , E;=E Ei-l-.l (23)
where 1 = 1,2,3,..., N. The second choice of representation is given
by the integral rigidity spectrum
'p/po
N(>p) = Nge (protons/cm?); p > p, (24)

where p and p, are in rigidity units of MV (millionvolts). From
Eq. (24) the differential rigidity spectrum becomes

¢(p)dp = -dN(>p) = — e dp, p> p1 - (25)

In order to represent the above momentum rigidity units in

energy (Mev) units, it is sufficient to use the relativistic relationship

between variables given by (pze)?=E2+2Em, ' or

p = YEZ +1876E (26)

where (ze) =1 electron c}%arge for protons, m,=938 (the rest mass
of the proton in Mev units), p is in MV and E 1is in Mev. Next, using
a change of variable technique, we obtain

_p(E)

¢ (EYdE = -dN(>p(E)) = No . Po
Po

dp
i , >
dEl dE , p> py ., (27)

! Note that A V = work/q ; in basic physics, the potential difference
is thus defined and, hence, Eq. (26) is dimensionally valid.

2 m_ = 938.23 to 5 significant figures.

12




where

dE YEZ+2m E

fi_E—( E+ mg )
O

Substituting dp/dE into Eq. (27), we obtain

By aE = - NolE+938) exp {_ W/E2+1876E\

where
E, = fo + (938)2 - 938,

and ¢ (E) has the units of protons/cm?Mev. The validity of the above
transformation follows from elementary probability theory of distribution
functions or else elementary calculus depending on the readers academic
orientation.

Referring to Eq. (22) it is of interest to obtain the proton differen-

tial energy spectrum at a depth X using the incident spectrums of
Egs. (23) and (24). Using the incident spectrum of Eq. (23) we obtain:

6 () =

fr -1 1 r
H; BE o ) (Eir-A) /rs E*S‘Eﬁl -A) 1/1‘

wp EHai-1 B B
(A+BE ) T (29)

where Eq. (20) must be satisfied; B = exp (2bX/a) and A = (B-1)/2b.
Using the rigidity spectrum of Eq. (24) we obtain (from Eq. 28):

p E*) _ Ng (s + 938) BE*I‘—1 exp (- Vs® +1876 s/po)

Po sr-1 s ¥ 1876 s’ (30)

r 1/1‘ sk Elr - A 1/1‘

s = (A+BE 1) ; E > = and E;=Vp/ +879,844 - 938.

13



The use of s was simply to shorten the size of the expression in Eq.
(39). Examples of typical differential energy spectra as a function of
depth X in aluminum are given in Figs. 4 and 5 illustrating the evalua-
tion of Eqs. (29) and (30).

In the following work, throughout this report, the presentation
of proton penetration results (dose, flux, etc.) applies equally well to
either plane slabs with a normal incident flux or at the center of spherical
shells with an incident isotropic flux. This is due to the straight-ahead
nature of the proton slowing down in a media, and the fact that the units
of differential flux are protons/cm? -sec-Mev-steradian. Thus, if both
time and direction are integrated out, the units are simply protons/cm? -
Mev and the flux has no directional dependence. However, other informa-
tion is usually provided concerning the source of the spectral data. If
we are told that the spectra is for an omnidirectional flux, then the
results apply only to the center of a sphere because of the (47 ) factor
implicitly contained in the total flux. Otherwise the results are applicable
as the reader sees fit.

It is of some interest to note in Figs. 4 and 5 that the spectrum's
maximum shifts to the right as the slab thickness increases. It is a
simple matter to find the value of E  at Wh1ch the spectrum's maximum
occurs by solving the following equation for E™

a¢x(E*) B
—‘—a—}i‘ﬁz— = 0. (31)

For example using Eq. (29) for ¢X(E*) one obtains

) [1 " ZbX)] Ve U
r- T exPi Ty (r-1)X 2bX
E = ~ | == if 22 <<,
max Zb . aql a
qi - (32)

Equation (32) is plotted in Fig. 6 for three values of q;. The slowing
down media is aluminum with r = 1.78, and 2b/a =1.8 x 1073

14
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III, MULTILAYER SHIELDS

The above discussion is equally well applied to stratified layers
of different materials. Figure 7 illustrates the parameters involved.
In order to see the nature of the derivation for multiple layers of different
materials, two layers will be considered initially. Referring to Eq. (19)
let us define

1 2b; X,
A, = - = kgt Sulet B8
1 Z.bl [Bl IJ N Bl ex al ) s
and consequently,
T r
E, = Ap+B E; (33)

where a; and b; are the material coefficients of Eq. (14); X; refers
to the thickness of the first layer with E, and E; denoting the energies
respectively incident on the first layer and transmitted through the first
layer. Now applying the relationship of Eq. (7) to the second layer,

we obtain

2

;TO—Z In (1 +2b,E;) = X, + ;éz In (1 + 2b, E,7) ;
Simplifying, . -
E, = A, + B, E, (34)
where
B, = exp (ZbaZZXZ and A; = Z—%—; [Bz -{] .

Substituting E, of Eq. (34) into Eq. (33), we obtain
r Ir r
EO = Al + Bl (BZEZ + Az) = (Al + BIAZ) + B1B2 EZ . (35)

Equation (35) expresses the energy at a depth of X, in the
second layer in terms of the energy incident on the first layer. If this

18
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is repeated for N layers one obtains:

r r

b3 sk sk
E = A +B E (36)

sk
where E is the incident energy on the first layer and E 1is the energy
at the end of the Nth layer; and,

x

A = A1+A2B1+A3B1B2+...+ANB1B2B3...BN_1,
(37)
B = BB, Bs ... By
. 2 .X-
where Bi = exp (—}E———l’ , Ay = (Bi-l)/Zbi ,and 1=1,2,..., N.
i

This fairly simple representation of the energy as a function of depth

and layer thicknesses of different materials is brought about by the

fact that r is assumed to be constant for all materials considered.

In shield optimization techniques, such a representation should be
promising. Since Eq. (36) has the same form as Eq. (19), it follows

that the coefficients A,B may be replaced by A*, B¥ whenever multi-

" layer shields are considered. Thus, all results obtained in the preceding
or subsequent sections can be extended to multiple layers by using

A*,B* for A,B. In the special case where 2bX/a << 1, i.e., (R~ aE"),
then for the ith layer Bj = 1, Aj = X;/ai and for N layers

N
e - ET 4 (3&) . (38)
a.

r=1 1

It may be desirable at times to obtain an estimate of the proton
transmission for two or more stratified layers of different materials
but using only one material for the attenuation. Thus, it is necessary
to find the equivalent thickness of the other layers in terms of the tase
material.

This can be readily done in the following manner. First, we
assume that for the base material, the simple power law holds for the
‘range equation (R = aEY). Then the thickness of the various layers in
terms of the base element becomes simply,

20




sk a
Xg = (;ﬁ Xa (39)

where A denotes a mass or material number; a denotes the coefficient
of the range equation' for the various materials; and the subscript §f
denotes the base material. For example, if a reliable but simple
estimate was desired for the proton dose rate behind 5 gm/cm?* of
Aluminum and 5 gms/cm? of tissue, the following information may be
read off a plot of dose rates versus depth in aluminum by reading the
dose rate at the depth:

Mk a

Al
X = X +
Al Al " a | tissue
(tissue)
or

2.77x 103
_ 2 gm 2y - 2
XAl 5 gm/cm?® + T TT =105 (5 /em ) = 11.56 gm/cm

(40)

That the above technique is valid can be shown readily by inserting
XB into Eq. (38), thus obtaining

£ X X* sk X a X
Er:E’F+;@+EB—=Er+a—§+(a—fDi ;—é (41)
B B B A B
or .
X X
' = BY + a—B+a—A
3 A

The last equation denotes the equivalent energy transformation
if we had used the material coefficients. Thus, the substitution of
Eq. (39) gives the same results as the simple power law approximation
of the range equations provided the same power r 1is used for all the

! The values of a are taken from Table I.
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materials. The utilization of the above simple relationships is of
engineering importance for estimating depth dose due to primary protons
when only a simple curve is provided for the so-called '""skin dose."

See Section V on "Proton Dose Rate Calculations."

IV. NONELASTIC PROTON COLLISIONS AND SECONDARIES

It was pointed out in the introduction to this paper that elastic
scattering off a nucleus by high energy protons (>20 Mev) is highly
forward with trivial reduction in energy. This assumption is not as
valid for proton collisions in hydrogen but this problem will not be
treated here. However, it is worth mentioning that the so-called range
straggling associated with energetic protons is an effect mainly due
to elastic collisions with electrons. However, this type of error is
usually quite small and can be represented approximately for protons by

op = 0.015R , (42)

where Op is the standard deviation of a Gaussian distribution depicting
the statistical fluctuation of the range about a mean range R (p. 662,

[ 31). This can be interpreted as meaning that 95% of monoenergetic
protons should have a measured range within about * 3% of the theoretical
range calculated from ionization losses only. This is not a bad error for
shielding calculations since the proton energy spectrum always contains
uncertainties of a much greater order of magnitude. This error is also
in keeping with the use of the approximation for the range introduced by
the writer (Eq. 14). Examination of the error curves in Fig. 2 shows
that for energies from less than 10 Mev to over 1000 Mev the coefficients
(a,b,r) can be chosen to maintain a maximum variation of less than 4%
from anaccurate theoretical calculation.

In the treatment of nonelastic cross sections the writer has
represented the cross section as a function of energy and mass number
using an empirical expression which is amenable to obtaining closed
form solutions in the mathematical operations which are necessary to
obtain transmitted flux and dose rates. The greatest constraint in ob-
taining an accurate expression for cross sections is the lack of adequate
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experimental nonelastic cross sections in the range of 5 Mev to 50 Mev
for protons. There are a few values at widely separated energies.
However, the low-energy cross section seems to resemble that of
neutrons to some extent and for energies from 5Mev to 18 Mev the
nonelastic cross section of neutrons taken from Troubetzkoy [ 4 | were
used for the protons with a Coulomb correction in energy. Then the
low-energy cross sections were blended into the proton nonelastic cross
section at higher energies. For proton energies in the range of 200 to
2000 Mev, the nonelastic cross section is fairly well represented by the
theoretical formula of Fernbach, Serber, and Tavylor,

2K
o _ RZ L_— (1 + ZKR)e R 2 . (43)
ne T 2KZR2 cm-

1
where R = rOA3 is the radius of the target nucleus with mass number
A, and K~! is the mean free path in nuclear matter. A simpler ex-
pression, determined by the author, which agrees well with experimental
values, as well as Eq. (43), is given by

FULERE
o = 0.38 (——) [barns] . (44)
ne 27 ,

The reason for choosing the ratio (A/27) in Eq. (44) is that the non-
elastic cross sections for aluminum (A=27) will be the basis for the
empirical formulas which are developed below. The requirements for
such a formula are that the values of the cross section should be zero
at zero energy, have a maximum between 5 and 25 Mev, and be approx-
imately a constant (asymptote) as the energy exceeds say 200 Mev.
Equation (45) satisfies these requirements with some degree of success,
in addition to being tailored for further mathematical operations:

0.73
0.38 (fi) E%T 4 guF
>7
gne(E) = e " , (45)
E + fE° + g

where d,f,g are constants to be determined by curve fitting techniques
and r (=1.78) is the same power as used in the range equation, (14).
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Examination of Eq. (45) shows that 0,,(0)=0.
large, o0,o(E) —» .38 (A/27)-™ ; this is readily seen by dividing
numerator and denominator of Eq. (45) by E®T and letting E increase

without bounds.

Also, as E becomes

In order to require that Eq. (45) has a proper maximum

for some positive value of E = Ejs , the derivative of Eq. (45) is equated

to zero and Eq. (46) is found;

r

cg +

Vg

- cdfg + d° g‘

EM:

where ¢ = .38 (A/27)'73 and the quantity under the radical is

d - cf

, d

> cf ,

(46)

> 0.

It should be pointed out that Eq. (45) has a minimum for a negative

value of E .

In the variable E¥, Eq. (45) is a ''serpentine' (as en-

countered in analytic geometry) which has been translated. In general,

the type of curve which is represented by Eq. (45) is shown in Fig. 8.

A

one(E)
o (E) = CE?T +aE"
| ne ' E°‘T+fET+g
I
!
_—=T T T T~ 7 —I—-——————————T——"
~ Asymptote
~a | ymp !
\ | |
\\ | |
N l !
Eum E=200
Figure 8. Nonelastic Cross Section Formula

In order to determine the coefficients
sufficient to solve simultaneously the system of equations given by

2
I) Xpgd - cXpf -2cXpg -dg = 0
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(d,f,g) of Eq. (45) it is




1) Xpgd - OppXppf - Oppg = Xy (Opf-¢) (47)

I11) Xod - 0,X,f- 0o g = Xé (05 -c)

1.78 0.73 . ]
where X = E and ¢ = 0.38(A/27) . Equation I is derived
from Eq. (46) and Eqs. II and III are from Eq. (45). When A=27
(aluminum), the following coefficients were obtained: ¢ = .38; d = 88;
f= -85, g=12,000. The above choice was determined by setting

EpM = 16 Mev with 9pg = 1 barn and then requiring 0, = .15 barn at
Eg = 5 Mev. The estimated values of 0, (E <20) for protons wer e

found by using the neutron data of Troubetzkoy [4] , and applying the
relationship

—

0 pE) = o [E -B(z4)]; B(z,A) =1.15 2 /A (48)

where B(z,A) is the Coulomb potential barrier, E the incident proton
energy, and o4, is the total neutron nonelastic cross section taken from
Ref. [4] for aluminum. Since for high energies (E > 200 Mev) the total
nonelastic cross section is given by the simple formula of Eq. (44), the
same sort of expression would be desirable for all energies. Hence the
expression below is an attempt to derive such an expression:

2

Z No CE®T + a&” )
he (A = "ne(E)X(X) " gy rEr g (O /emh (49)

where

= Avogadro's number

8.479 x 1072 (27/A)° %,

= 1.78 ,

= 1.9547 (A/27)-%% 2T = 1,9547(A/27) 0P
= -84.9(A/27):221 T = 84,9 (A/27)-3933% | and

= 11,996.3 (A/27)"*2T = 12,000 (A /27) 78676

0 = AR OOZ
"
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The writer makes no claim to success in finding an adequate
representation. However, the accuracy of Eq. (49) is probably sufficient
for low-Z materials (Z < 30). Figure 9 shows the results of using the
above fit for several different A numbers. Figure 10 is for 0. (E)
in barns. The reversal of relative values between Fig. 9 and Fig. 10
should be observed.

In order to utilize the above equation in a computation, the
following analysis is undertaken. If a proton energy flux ¢O(E) [ protons/
cm? -Mev] is incident on a slab of material, A, and if nonelastic
collisions are considered, the energy spectrum of the primary protons
which get to a depth x(gm/cm?®) should be given by

sk s ".Ii)( ZE*(X) dx
ndE ) = ¢ (E )e (50)

where ¢X(E“‘) is given by expressions such as Eqs. (29) and (30), and
Z (%) is given by Eq. (49) with the energy E depending on x ac-
cotding to Eq. (19) or, simply,

Ur

vVx 1
E = (Qe _ﬁ) (51)

Q — (l:: ) d -
" Zb an 14 -

2b

The problem hinges on the ability to integrate the exponential of Eq. (50).
Hence the expression,

2
(¢ - 2bd) - 4b(c - bd) Oe < + 4cb2Q? V%

14
1 - 2bf + blg) - 4b(l - bf)Qe ~ + 4b2Q%e

ZE* (x) = (52§

2Vx

is obtained by substituting the energy transformation of Eq. (51) into
Eq. (49). Now, make the following substitutions:
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' v d
2bQe * - ¢t and dx = U—% (d 1is differential here) ;

c -2bd; 6 = ¢ -bd (d is a constant here) ;

€
I

l - 2bf + 4b%g; and B =1 - bf .

Q
t

Then the integration of Eq. (52) can be represented by

x! t'ZZerV-'
- 20t + ct?) d
f Yoo ) dx = & wo 20t ¥ ctt ) dt g
E v
O

o - 2Bt + t2 t
2bQ :

letting T =« - 2Bt + t* , we can write

x’ t! t’ t’
w dt 20 dt c tdt
b3 = — —_— - -— + — _— .
fZE (x) dx > T T y T (54)
(6] b0 2bQ 2bQ

Equation (54) is now a set of standard forms in most handbooks. However,
one observation should be made about the expression

q = 40-4B% = 4b® (4g - %), (55)

where the q , as defined above, occurs in the handbook solutions to
Eq. (54). Since the factor V¥q' occurs in the handbook formulas, it
should be noted that

4g > f° (56)

must be satisfied in order to obtain a valid solution. This inequality
is readily satisfied as seen by examination of Eq. (49). Also, this
inequality determines the nature of the solution since a solution is
obtainable for V-q but with a different mathematical form. Thus we
obtain for the solution of Eq. (54), omitting details of simplification:
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’ a
X ” & 2 e (C_D)
f 5 G2+(A+£2-+BEr) 4b
dx = DX + lo -
g* (%) g %
4 G? + (—f2—+ E )
sk B -
A+fE +BE | %+E *
+ F |tan™! - tan"! (57)
G G
where
C - 2bd £2
D=3 - 2bf + 4b%g ’ G =Ye-7
and
. a
Fl= o [0 - ¢ - 4bgD)

The definitions of A and B are given in Eq. (19). The value of F
is approximately 3.35 x 10™* for aluminum. Hence there appears to
be some justification for dropping the arctan functions. That this
assumption is valid will be shown below. In any case we can write

x! 2_(c-Dp)
f T (x)dx f *r. 2 4b
SR O G + +E)
¢ = f *r
~GZ+(A+E+BE )2
(58)
A +i2 +BE ¥ fz +E
X exp {-DX - F|tan™! G - tan

of simply if F times the difference in the arctan functions is sufficiently
small;
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f b2 41(0 - P
- % . Wy 2

prix e foey (f2-+ E ) -DX
€ =y e

G? + (A + fz+ BE T)? (59)

Figure 11 is presented in order to illustrate the integral over penetra-
tion depth of the differential nonelastic cross section of the proton slowing
down from ionization losses and also the effect on the cross sections

of the arctan terms in Eq. (57). The curves in Fig. 11 are simply the
integral of Eq. (57) divided by the depth x of penetration in aluminum.
These curves depict the energy dependence of the nonelastic cross
sections and exemplifies dramatically the effects of the ionization losses.
The dashed curves show the results obtained when the arctan terms

are omitted. It should be noted that the cross sections are plotted as

a function of the protons energy E at the depth X in aluminum.
Perhaps the next curve, Fig. 12, presents the most significant results
of the foregoing analysis. Here Eq. (58) is plotted for the same thick-
nesses as shown in Fig. 11. Rather interesting is the fact that the
exponential function (Eq. 58 or 59) is very nearly a constant over the
total energy range for a given penetration thickness. This is a very
important demonstration since the examination of Fig. 11 might lead
one to infer that the use of Eq. (57) or equivalent is necessary in order
to obtain a reliable flux calculation for penetration thicknesses less

than say 10 gm/cm?. Actually, the relative errors associated with
using a constant cross section increase with depth so that a a depth of
50 grams/cm? the error in the attenuation is of greater significance
than at 2 gm/cm?. The major problem associated with choosing a
constant cross section is the cross section dependence on a given proton
energy spectrum. However, it is felt that an approximation such as
given in Eq. (60) below is justified in view of the many uncertainties
that exist in any energy spectrum or the total proton intensity.

L, @

0.27 2
~ 0.01 (EAZ) [Cm] . (60)
ne gm

In Eq. (60) the constant, .01, may be reduced to . 009 or less when
X3 20 gm/cm?. However, the nonelastic cross section, as given by
Eq. (60), should be restricted for application to the attenuation of the

i
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flux only. In order to estimate the production of secondary particles,

q. (49) should be used. Thus, the intensity of nonelastic collisions
per Mev at energy E* produced at the depth x is well approximated
by the relationship:

.27
27
” . . -.009 (-—) x ..
S, &) = Zne (E"‘,A) ¢X(E,.<) o A [colhsmns-J (61)

gm-Mev

where the cross section Ln(E*,A) is given by Eq. (49). The energy
flux ¢ (E*) is given by either Eq. (29) or (30). From Eq. (61), it
follows that the total number of nonelastic collisions per gm at depth

x 1is given by

o % |collisions
Sy = SX(E )y dE [—_ém_—-_] . : (62)
E*

However, the results of Eq. (62) are not of importance since the quanti-
ties desired are actually the number and energy of secondary neutrons
or protons produced at depth x . A further discussion of secondaries
will be treated in the next chapter on dose rates. In order to illustrate
the nature of the curves depicted by Eq. (61), an incident spectrum of
the form

- p/Po

N(>p) = Nge , P> P1

(Eqs. 24 and 30) was chosen. The results of this calculation are shown
in Fig. 13. The curve in Fig. 14 illustrates the difference in shape
between the flux curve and the nonelastic COlllSlOI’l density curve. If

a constant cross section was used for 2, (E ,A) the curves in Fig. 14
would be exactly parallel.

V. PROTON DOSE RATE CALCULATIONS

The next step in this development is to derive expressions for
the primary proton tissue dose or dose rate as a function of shield
thickness and/or depth dose in tissue. This is obtained as follows.
For the general case after penetrating a depth x in a shield the dose
rate is simply given by
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Dy = F fw e 6 (E") S(E®) aE” (63)

where the energy E™ is taken at the penetration depth x . The S(E¥)
is the stopping power in tissue and is given by Eq. (1). See Eqs. (57)
and (29) or (30) for the first two expressions in the integrand. The F
is a flux-to-dose conversion factor depending on units of flux. The
stopping power formula for tissue can be made compatible with the
approximating range equation, (14), in the following manner. Using
the definition of Eq. (2), we see that

dE 1
S(E) = - dR - d a T
—_ Rad [e)
= [Zbo log e (1 +2b E™©)
or
S(E) = ( L ) gl To, 2by ¢ (64)
apTrg agrg

where a,b,,r, are corresponding range coefficients for tissue (Fig.15).
Using the approximations suggested in the previous chapter for the non-
elastic cross sections we can write the proton dose rate after trans-
mitting several layers including tissue in the last layer in the following
way:

>k Ezr— ]lr By Y,
_ ke :( ki ) (I Xt 2 X+ ) L ET T 5y g %
Dy=F f roL % e ¢ (E*) + =2 dE
er (B “oroaore ]
' B* (65)
where
2
F o= 1.6x10° rads-cm protons

if ¢(E*) has units of

3

protons cm? -Mev
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or

-5 rads-cm?®-sec * protons

=5, 10 i
5.76 x hr -proton if ¢ (E ) has unit of

cm? -sec-Mev

The flux (i)(E*) is given by either Eq. (29) or (30) with the constants
A¥*, B™ defined for multiple layers as shown in Eq. (37). Also it
should be noted that the r power used in Eq. (37) is constant for all
layers; however, the r, power used in the stopping power may be
different. In fact in all calculations presented in this paper for dose

the r is chosen to be 1. 78 for the shielding materials, but ro is

1.80 for the stopping power in tissue. This flexibility permits a small
increase in accuracy with little loss in computational speed when numeri
cal integration methods are employed. It should be pointed out that if
Eq. (29) is used for the energy flux, then fgr each energy sector of the
spectrum confined between two energies E1+1 and Ej, another integral
analogous to Eq. (65), is required, but the integration limits change
with the Hj,qij for each sector. However, this is conveniently carried
out in a numerical integration process by using the coefficients Hj, qj
which are necessary to satisfy the limits of Eq. (29) at the energy E*,
Very often it is useful to examine the integrand as a function of E¥*. In
this manner, a feeling is obtained for the important energy regions in
terms of dose. Also, the slope of this curve should indicate the width
of energy intervals necessary for an accurate numerical calculation.
Thus, the differential proton dose is calculated as follows:

'(ZIX1+ZZXZ +.. )

= Fe ‘ 6 (E%) s(£%) I2ds

Mev

dDy,
dE

(66)

Examples of Eq. (66) are shown in Fig. 16 and 17. The proton
dose as a function of depth, calculated from Eq. (65), is shown in Figs.
18 and 19. In the latter two figures, there is a curve labeled '""Total
Estimated Dose'; this refers to an approximation of dose in rads which
corrects for the secondary protons and neutrons generated by nonelastic
collisions. The correction is based on the observation that for a shield
of low-Z materials the number of secondary protons and neutrons per
nonelastic collision at energies below around 200 Mev is less than one
cascade particle of each kind (protons and neutrons). With the above
observation and other considerations, it became plausible to conjecture
that if the nonelastic attenuation factor exp (-Zp¢X) is omitted in the
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dose calculation, then a correction is made for the secondary particles.
The foregoing is the correction made in this paper for the calculations
of the 'total Estimated Dose." Thus,

Total Est. Dose = Primary Proton Dose x exp (Z,X;+Z,X, +...)
(67)

Of course such an approximation is only valid within certain fixed limits
of shield thickness, Z number of target, and energy of colliding protons.
However, to lend validity to the above assumption, Fig. 20 is presented.
The secondary data in Fig. 20 were generated by C., W. Hill of Lockheed
[2]. The interesting result is that the approximation of Eq. (67) is
‘rather accurate for dose in rads for the thicknesses of aluminum shown.
The approximation will probably become less dependable at greater
thicknesses, but at these greater depths the total dose is substantially
smaller and even a fairly large error in estimating secondary contri-
butions may be unimportant from a practical point of view. Table II
provides an analysis of Fig. 20.

The numerical methods used in integrating Eq. (65) consisted
simply of the following technique:

b N
ff(E)dE = A Z f(kA - %), (68)
a k=1
where
A = b-a
TN

Since the independent variable (E*) extends over such a large range,
from 0 to over 1000 Mev, the summation of Eq. (68) is carried out in
four separate sums so that the A can be increased in value as the
energies increase. The number of terms in each sum is an input
parameter which allows the user of the code to establish his own
accuracy.
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TABLE 11

Data Analysis

Dose of Total Dose of Total | Primary Dose
Z(gm/cm?) Primary Protons| Secondaries Dose x exp (.012) |% Diff.
10 73.5 5.8 78.8 80.6 2.3
15 36.0 4.7 40. 7 41.8 2.7
20 21.5 4. 2 25.7 26.2 2.0
25 ‘14,2 3.7 17.9 18.2 1.7
30 10.0 3.4 13.4 13.5 0.75
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Some useful simplifications in Eq. (65) can be made if a power

law input spectrum (Eq. 29) is used. Thus, the dose rate is represented

by
e
(E1+1 -A )
B:,:
e E T gl To op g L«
D, = F SEX -5 X, - 1 ( 0 E,
" exp [ 14 252 1 ' ra;-1 |\ aoro Aoro ) d
AT+ B"E ¥
A EED (69)
E; -A™/T
B:,:
where the A'P, B are defined for multiple layers in Eq. (37). If we
make the change of variables indicated by
sk kX
* A t E
E = [——) (*‘ or t = —po——r (70)
™1 l-t A +BE "
1
and N 1/1‘ -
b4 “ r
aE; - A-, t dt ,
B>“ I‘+1
r(l-t) T
then, after simplification, we obtain the following: -r
L-A"Ej4
) r-rotl l-ry
= % . T r
F-B eXP('ZIXI'ZZXZ'---)Hi 1 A" t dt
D = | % Tt
r+qi-1 aoto | B TTo-GitZ
B r -1 1-t)
r,A ]_—A*Ei ( .
2w -T
E.
r+l LA B
st Tr 1/1‘
2 A d
+ Lo (—“—) £_ct (71)
asTo |\ B r-qit2
2
1—A*E-r (1 _t)
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Now, making the substitutions,

m = HETo o, _ Totai-Z
r T
(72)
% + K ;- 2
m* = r+l , ¥ = qi ,
o T

we obtain, after some additional simplification,

st -r
1-A"Ei+]
To
F -5 X, - - ...)H; *\T - -
D= F exp ( 1}2(1 zZ,X, ) Hj ‘E_k) Res 1(1_t)n 1 dt
A* q; % /¢ A" .
a ror B . 1 -A*E_ir
% 7T
1-A"E;4q
. | -1
+ 2b, R SIS b at), (73)
w_—-T
1-A"E;

where the lower limit is set to zero if A*=> E1r This condition is

met when the minimum proton energy E; has a range equal to or less
than the minimum shield thickness. For example, if Ej = 30 Mev, then
any aluminum thickness greater than 1.175 gm/cm? would cause the
lower limit to be zero. Thus, one can always choose a thickness of
shield so that the integral of Eq. (73) may be written as:

o

o
- - ¥ - *_1
D =¢ {(/, £ 1(1-t)n Yat + 2b,, f £ 1(1_t)’“ d'} (74)
0

0
where

T
+1 -

and o =1 -A*Ei

:fexp(—zlxl—zz)(é —...)Hi ('[/ = B_’s:< r_
x4=2 1/ ’

T *
aOrOrA B
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However, the integrals are now recognized as incomplete beta functions.

Thus, one may write the dose as simply

D = (p{([/ Ba(m,n) + ZbOBa(m*,n*)} . (75)

Now, if the assumption is made that the initial upper energy limit
E;41 is sufficiently large, then the value of o approaches 1. Thus,
the further simplification in terms of gamma functions is made:

I{m)I(n) T(m*) T (n%*)
b = - t+ 2 e e > 2 .

¢ {‘// T (m-+n) bO I (m*+n%) q (76)
If the stopping power coefficient b, for tissue is set to zero we get
simply:

I'(m) T (n)

D = T {m+n)

, 9>2 -r. (77)

Equation (77) should be used when n*= 0, (q =2). Finally, if all bj
are set to zero for the range coefficients, then B*=1 and A* = X;/a; +

X,/a; + ... ; and if r,= r -we obtain the version of the simplest feasible

model for proton dose rate calculations (See Eq. 13.),

1 tq-2
FH exp (-Z,X; - Z,X; - ...) F(F)r(rrq )

D = r+q-2 r+q-1 ’
st (B2, )T rIS )

(78)

a; 3

The above equations have the defect that the incident proton energy

spectrum is represented by only one power function ¢o(E) = HE "4 E> E,

and in Eq. (78) the range is depicted by the simple relation R = aET .
However, the results obtained by using Eq. (76) are quite impressive
as is demonstrated in Figs. 21, 22, and 23 by comparison to Alsmiller
[5] and Hill[2]. In order to further validate the use of Eq. (76), the
comparison of results using Eq. (76) and the same calculation using
Eq. (65) with a numerical integration technique given by Eq. (68) is
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made in Fig. 24. Figure 24 depicts the relative error between the
gamma function computation (DF) and the numerical method (Dpym)-
For a shield thickness less than about 40 gm/cm? the D is about
1/4% higher than the Dy ym - This is probably due to the systematic
error introduced in the numerical method which can be improved by
taking more terms. (The numerical method used 55 steps between 0
and 1000 Mev.) However, as the thickness increases above 40 gm/cm2 ,
the relative error increases more rapidly. This is due to two factors.
The first is the fact that the gamma function represents an integration
from an energy of zero to infinity. The second is the fact that the
stopping power formula in tissue (Eq. 64) becomes a very poor approx-
imation above 2000 Mev, resulting in a factor of six over estimation

at 10,000 Mev. One solution would be to refit the stopping power formula
with more terms 50 that a more valid approximation is found for energies
above 2000 Mev. However, it follows from consideratigns of the proton
differential spectrum that as E* exceeds 1000 Mev, the proton number
approaches zero very rapidly. Hence, the results shown in Fig. 24
imply that even for a thickness of 100 gm/cm? of aluminum the relative
error due to the poor estimation of stopping power above 2000 Mev
results in only a small over -estimate of dose depending fairly strongly
on the power of the spectrum. For example, in Fig. 22, with g = -4.6
the estimated error at 100 gm/crn2 due to error in the stopping power
above 1000 Mev leads to about a 1/2% over estimate in dose, whereas
when q = -3.95 this error is about 1%. The remaining differences
can be explained by the integration to infinity for the gamma function,
and the numerical integration error of about 1/4% in Eq. (65).

The foregoing analysis gave an indication of the numerical errors
which occur in the proton dose rate calculation. However, a very im-
portant source of error is often ignored in such discussions. What
happens if the range energy data is systematically in error by some
small amount? Analysis by the author has found that, in general, if
the range is 'consistently low or high by, say, x%, then the dose is
consistently low or high byabout 2x%. Thus a systematic error in range
is reflected twice as great in the dose calculation. An example of the
foregoing is presented in Fig. 25, and a detail error analysis of this
figure and two other systematic errors are shown in Table III.

The results of Table III, however, have one consoling aspect
and this is that the errors are approximately uniformly displaced from
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TABLE III

Comparison of Relative Errors in Primary Proton Dose
Where the Proton Range Has Been
Systematically Under - or Over-Estimated

Dose*for Relative| Relative | Relative |[Relative | Relative |Relative
Accurate Error Error Error Error Error Error
gm/cm? Range for +5%** for -5% for +10%|for -10%| for +15% |[for -15%
4.5 3.331x10° +.1010 -.1104 +.2225 |-.1988 +.3425 -.2900
9.0 7.387x10% +.1010 -.1105 +.2225 [-.1988 +.3427 -. 2901
18.0 1.564x10% | +.1012 | -.1106 | +.2228 [-.1991 +.3430 | -.2905
27.0 6.072x10! +.1013 -.1107 +.2231 §-.1993 +.3435 -.2907
54.0 1.068x10? +.1018 - 1112 +.2242 |-.2€00 +.3452 -.2922
81.0 3.437x10° | +.1026 | -.1119 | +.2258 |-.2016 +.3476 | -.2939
108.0 1.415x10° +.1035 -. 1127 +.2276 {-.2031 +.3505 -.2962
* Rads at center of sphere; d)O(E) = 6.894x10" g7 protons/cm2 Mev.

aleats
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the correct calculations. Thus one hopes that the deviations of the
Bethe-Bloch range energy calculations vary randomly from the true
proton range so that the error is periodic from say +5% to -5% and
oscillating several times between 10 Mev and 1000 Mev, then the above
type error in the dose calculation might well approach zero.

As a final presentation in this section on Proton Dose Rates,
a cursory analysis was made of solar proton events presented in Ref.[ 6]
by W.R. Webber of the University of Minnesota. The result was a
pseudo-average flare based on data from 1956 through 1962. This flare
is represented by the integral rigidity spectrum

P_
" 95 protons l
N = 2. 9 DD it
(>p) 5x10 e omz flare | (79)

where p is in units of MV (million volts), Rather interesting is the

fact that even though the above flare is sort of an average, the probability
is only 0. 025 that a more intense flare occurred during any one -week
period between 1956 and 1962. Thus one could assume that the above

flare represents a model for proton flares per week with a . 975 probability
that the calculated doses will not be exceeded. The dose rates for the
above spectrum at the center of a spherical enclosure of variable alum-
inum thicknesses is presented in Fig. 26.

VI. ISOTROPIC INCIDENT PROTON FLUX ON SLABS

In the foregoing the calculations were for normal incident protons
on plane slabs. Even though the calculations are denoted as dose rates
at the center of spheres the computational géometry is for a monodirec-
tional normal incident flux. If one wishes to extend the above calculations
to oblique incidence, the only change necessary is that the slab layers
X; be replaced by the thickness along the slant path of the oblique proton
flux. Thus, the slant thickness is simply

p; = Xj/cos 64 (80)
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where 6, is the angle between the slab normal and the angle of incidence
of the proton flux. Thus it would be fairly simple, for any incident
angular distribution, to calculate the dose rate at a given depth by cal-
culating the proper solid angle weighting function and employing only

the dose rate data for normal incidence. Thus, for the isotropic in-
cident case one sees that if the normal incident dose, D(Xj), is calculated
for the omnidirectional flux, then the primary proton dose rate for the
isotropic incident flux on a slab is given by

1
1 X
DIso. = Zﬂf i D ‘cos 9) d cos 0 , (81)

or numerically the simple summation

1
Diso. 7 2§ Z i(cos B ) : (82)

where

cosGi=ﬁl-(i- ).

The above increment in cos 6 represents taking the ith dose component
at the midpoint of the ith solid angle. Also, the use of Eq. (82) would
embody utilizing interpolation in a precalculated table of dose as a function
of thickness. The above method was not utilized in the foregoing cal-
culations even though it merits consideration as a computational method.
The dose for an isotropic incident proton flux on a slab was calculated

by employing numerical integration on the double integral below:
b

2p ™, =
-ZneP
sk % - %
DIso_ - ZWFl e ¢p (E")S(E™) sin 6 d6 dE™ , (83)

where the p= X/cos6 and the calculations of B*, A¥ (Fig. 7) are
calculated using pj = Xj/cos 6; for the slab penetration thicknesses.

The results of the isotropic incident proton slab calculations are presented
in Figs. 27 through 32. In Fig. 27, a comparison is made with Alsmiller's
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work [5] . The agreement seems rather good. Figures 28 and 29
are presented to parallel the treatments given in the previous chapters
of this report for the same incident rigidity spectrum. Of course, the
differential flux and dose/Mev are defined the same as previously ex-
cepting that an integration was performed over direction for the iso-
tropic slab case. Figure 30 presents the double integration of Eq. (83)
for the same incident flux as shown in Figs. 28 and 29. Figure 31 is
presented merely to emphasize the difference between two geometries
and compare the primary dose of Fig. 18 with that of Fig. 30. It should
be noted that at X = 0 gm/cm? depth, the isotropic dose on a slab is
1/2 the dose at the center of a sphere. Thus, there is a systematic
difference of a factor of two due to the difference of a 27 space and

a 47 space in the inferred solid angle integration. Figures 32 and 33
complete the isotropic incidence analysis. Here the dose/steradian is
presented for several thicknesses of aluminum ranging from 1 gm/cm?
to 50 gm/cm? in Fig. 33. The possible applications of this type data
are probably small since the straight-ahead model used in proton pene-
tration calculations permits fairly simple numerical methods for even
complex geometries. However, the curves do indicate the relative
significance of the direction of incidence on the primary proton dose

in finite slabs. The integration over solid angle of these curves gives
the data points shown in Fig. 30. The curves in Figs. 32 and 33 indicate
clearly that care should be exercised in an arbitrary assumption such
as any proton with an angle of incidence greater than 45° to the normal
can be ignored. For example, even for 10 gm/cmz, one would probably
feel it necessary to consider angles as large as 70° (cos 6 = .34) in
order to obtain a reliable integration over angle. The implications of
Figs. 32 and 33 on the treatment of complex geometries leads one to
recognize that relatively large proton fluxes may enter a detector at
rather oblique angles measured from the vehicle surface normal,
particularly if the vehicle walls are relatively thin. A study of more
complex geometry effects is given by the writer in the report "Flare
Proton Doses Inside Lunar Structures" [7] . Three examples taken
from this report are shown in Figs. 34 and 36. The incident proton
flux in these calculations was assulg7ed to be isotropic and the rigidity
spectrum N(>p) = 4.54 x 10!° e~ used throughout this report

was assumed. The dose calculations in Figs. 34, 35, and 36 are based
on the '""Total Estimated Dose,' which includes secondaries.
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ViI, CONCLUSIONS

One of the difficulties in an analysis of the type presented in
the preceding pages is finding a point at which to stop. There are several
areas which have been menticned but not subjected to adequate study.
For example, the examination of multiple layer shields and depth dose
in tissue, as well as the tedious problem of treating secondary particle
production fractions and their attenuation in a shield. However, it is
hoped that usable short cuts and insight into various aspects of proton
shielding have been made. Also, it is hoped that adequate information
has been presented in the report for determining the validity of the
results obtained and the scope of applications of the suggested approxi-
mations.

<

The computer codes used in the foregoing work are written in
Fortran and are available to anyone interested. The proton dose rate
code is capable of treating up to ten layers of different materials and
takes directly either the coefficients of the integral rigidity spectrum
(P in Million volts) or the power law representation of the differential
spectrum (p'rotons/cm2 -Mev-sec). The power law spectrum can be
broken into as many as ten segments or energy groups. The output is
rather extlensive depending on the users' needs. Thus, differential
flux, dose, and nonelastic collision density can be found as a function
of the proton's energy inside the shield. If a choice is made to treat
isotropic incidence of protons on a slab, the angular distribution of the
transmitted proton dose is printed out for up to 20 increments in the
angle 9 measured from the slab normal. The greatest virtue of the
above codes is the lack of large amounts of input data since the approxi-
mations discussed in this report are utilized wherever there is no real
compromise in accuracy.
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